ICT365

Software Development Frameworks

Dr Afag Shah

Common Language Infrastructure

Application Packaging and Deployment

1

L_ Ry P

4

Murdoch

Topic Aims I
Murdoch

IIIIIIIIII

Understand .NET assemblies
how are they generated?
what do they contain: manifest, metadata, IL, etc;

the two types: executable programs (.EXE) and
libraries (.DLL);

representation of types and type references in
assemblies.

Understand Common Type System (CTS)
why common types?

value types and reference types;
primitive types, their names in BCL, IL and C#;

mapping of high-level language types to CTS.

Fl

—_—

Topic Aims (cnt'd) it

Understand the role of Common Intermediate
Language (CIL, or IL).

Understand how high-level language types are
mapped to IL types.

Understand how CLR loads and executes .NET
assemblies.

Understand and be able to use C# compiler esc
and VB compiler vbe to compile source codeinto

.EXE and .DLL assemblies.

Be able to use ildasm to generate textual
representation of assembly code and be able to
map the high-level language types to the IL
types in such textual representation.

Common Language 0

w

Murdoch

Infrastructure eE

CLR is Microsoft’s implementation of Common
Language Infrastructure (CLI), which defines
Common Type System (CTS), metadata
structure and syntax for representing CTS,
and Common Intermediate Language (CIL).

CLI is an approved international standard
proposed by Microsoft. The latest version is
available at

http://www.ecma-

iInternational.org/publications/standards/Ecma-335.htm

http://www.ecma-international.org/publications/standards/Ecma-335.htm

Framework Class Library (FCL) I

Murdoch

IIIIIIIIII

Kernel Profile (defined in CLI):

- Runtime Infrastructure Library, Base Class
Library (BCL)

Compact Profile (defined in CLI):

- Kernel Profile plus Network Library, XML
Library, Reflection Library

Non-CLI libraries:
- ADO.NET, ASP.NET, Windows Forms

High-Level Languages for .NET g

w

Murdoch

IIIIIIIIII

C# is the lingua franca of the .NET.

Other high-level languages are also available:
- Visual Basic .NET,
- C++/CLI,
- J#, Perl, ...

You can use the same FCL from any of the .NET
languages in nearly identical way.

8

—_—

Traditional Programming Model v
Murdoch

UNIVERSITY

c Object code for
++ source Assembly code one CPU e

Egcjce+\/_v|_|'c|:1bizlrls for one CPU architecture Executable
Y architecture & 5| program for |
& & £35| that CPU
Q & = architecture
& &
oX ¥ C++ Library for I
& the same CPU S
architecture gy
&
. —
: pr— h m—p another CPU =| Executable
code with calls or another : =
to VB lib CPU architecture © | program for Another
© orary architecture 2| thatCPU CPU
& =1| architecture
R <
L & VB Library for Qj;zf’
¥ another CPU

architecture

8

.NET Programming Model ~
Murdoch

UNIVERSITY

~)
C# source NET
code with calls|=——>| Assembly FCL
to FCL < code
&
N
%O .NET Framework implemented on one
@) computer system, eg Windows 10)
~
VB.NET sourcef=—> .NET FCL
code with calls Assembly
to FCL) code
@Q .NET Framework implemented on a
\)0 different computer system such as
Li
é{l/& _ inux)

&
Execution of any .NET assembly on different computer systems with possibly
different operating systems and/or CPU architectures

Fl

——

Platform Independence S

UNIVERSITY

A .NET program is compiled into, and deployed as,
an architecture independent assembly code. The
format of the assembly is specified in CLI
standard.

The assembly code would run on any system
(Microsoft Windows, Linux, Mac OS X etc), as long
aé that system has an implementation of CLI and
FCL.

Therefore, at least in theory, .NET programs are
platform independent.

In reality, complete implementation of .NET
Framework is only available in Microsoft operating

systems.

There are attempts to implement CLI and FCL on
other platforms (eg, Linux and Mac OS X) such as
mono project (www.mono-project.org). However
the implementation is not yet complete.

Fl

——

Language Interoperability Nitirdoeh

IIIIIIIIII

Under .NET, you can develop an application
with one .NET language such as C#, or with
several .NET languages.

You can create a new library of functionality
with one .NET language (such as C#) and
clients of the library can use it from any
.NET language (such as VB.NET).

Once you know how to use a library from one
language such as C#, you will be able to
use the same library from any other .NET
language.

Why Learn .NET? v

Murdoch

IIIIIIIIII

Microsoft spends huge sums of money to move
developers to the .NET platform.

It is expected that many new software projects will
target the .NET platform, especially those that
are internet and web based.

It is much quicker to develop applications on .NET
platform due to its powerful class libraries.

Surveys show that there is a demand for .NET
skills in the job market.

$

—_—

w

Murdoch

UNIVERSITY

Simplest .NET program using C#....

// Hello.cs
//

// this is our first C# program

public class Hello
{

public static void Main(string[] args)

{

System.Console.Out.WritelLine ("Hello, world!");

}

8

Compile and Run ~
Murdoch

UNIVERSITY

Use a text editor such as Notepad++ to create
the source code.

Save the source code into a file with .cs
extension name, such as “Hello.cs”.

Compile it with C# compiler csc from Command
Prompt:

csc Hello.cs

Execute the program Hello.exe by typing Hello in
Command Prompt or double clicking it.

Note that csc is usually under directory:
c: \WINDOWS\microsoft. NET\Framework64\v4.0

. 30319\

http://microsoft.NET/

n‘l l"flnl‘k

.f

Example 1

File Edit View Search Tools Window

c:\cs>»"C:\Program Files (x86)\Microsoft Visual Studio\2e817\Enterprise\MSBuild\15.8\Bin\Roslyn\csc
.exe” "ci\cs\Hello.cs" fout:"c:\cs\Hello.exe"

Microsoft (R) Visual C# Compiler version 2.3.2.62116 (8522b473)
Copyright (C) Microsoft Corporation. All rights reserved.

c:\cs»dir
Volume in drive C is 0S
Volume Serial Number is ECEE-2B8&7

Directory of c:\cs

12:18 PM <DIR>
12:18 PM <OIR>» .
88:13 PM 47,576 CsC.exe
12:89 PM 189 Hello.cs
12:18 PM 4,896 Hello.exe

3 File(s) 51,861 bytes

2 Dir(s) 279,597,541,888 bytes free

"C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\MSBuild\15.0\Bin\Roslyn\csc.exe" "c:\cs\Hello.cs"
Jout:"c:\cs\Hello.exe"

C#
source code
file(s)

|

C#
compiler

|

Basic
source code
file(s)

|

Basic
compiler

|

IL
source code
file(s)

|

IL
Assembler

|

Managed module
(IL and metadata)

Managed module
(IL and metadata)

Managed module
(IL and metadata)

8

—_—

w

Murdoch

UNIVERSITY

A managed module
IS @ standard 32-
bit Microsoft
Windows portable
executable (PE32)
file or a standard
64-bit Windows
portable
executable
(PE32+) file that
requires the CLR to
execute.

10

Fl

.NET Assembly urdoct

UNIVERSITY

A source code written in a high-level .NET language such as C#
or VB.NET, is compiled into a .NET assembly.

The assembly contains metadata representing the types that
were defined and referenced in the source code as well as
Common Intermediate Language (CIL, or IL) instructions that
Implement the methods of the types.

The assembly is saved into a binary file, whose file format is
known as Portable Execution/Common Object File Format, or
PE/COFF, or simply PE format. This is the common format for
binary code on Windows.

A .NET assembly is a unit of deployment, execution and re-use.

Manifests and Assemblies u

Murdoch

UNIVERSITY

Assembly A Assembly B
Manifest Manifest
Type Type
Information Information
/ﬂ
Dependency Dependency
Information Information
VersionfAuthor VersionfAuthor
Information Information
LWlictosoft HET
Code Code
Asserrbly (IL) (IL)
e """'““"|"""““'"""“““"'""““""""““"""‘. AT s et R Ry
! i | . ! Portable i
| :] i i Execitable (FEY !
Mlicrozoft Intenrediate Language (WVSIL) Code Iietadata ""'i"""": i file :
Application Dependency ir_;;:s-sér-iélgf-fu&“- K -

! Manifest

Combining managed modules b
into assemblies.

Managed module
(IL and metadata)

Managed module
(IL and metadata)

Resource file
(jpeg, .gif, .html, etc.)

Resource file
(jpeg, .gif .html, etc.)

Murdoch

UNIVERSITY

Tool combining multiple
managed modules and
resource files into
an assembly

G# compiler
(CSC.exe),

Visual Basic compiler
(VBC.exe),

Assembly Linker
(ALexe)

(Manifest: describes the
set of files in the assembly)

Assembly

Managed module
(IL and metadata)

Managed module
(IL and metadata)

Resource file
(jpeg, .gif, .html, etc.)

Resource file
(jpeg, .gif .html, etc)

19

Fl

——

.EXE and .DLL Assemblies Miiccisch

IIIIIIIIII

There are two types of assemblies: the
executable programs (.EXE) and libraries
(.DLL).

.EXE assemblies differ from .DLL assemblies in
that only .EXE assemblies contain a small
boot-strap code to call CLR and have one and
only one method with an IL directive
“.entrypoint”.

One can run a .EXE assembly but not .DLL
assembly.

An assembly may use the types defined in
other .DLL and .EXE assemblies.

Fl

——

Contents of Assembly e

IIIIIIIIII

An assembly consists of

a manifest: name, version etc that identifies the
assembly, list of files in the assembly, list of
external assemblies;

metadata: table of type definitions and table of
type references;

IL code: methods are compiled into IL. At the
runtime, the IL code is compiled into native
machine code for execution;

other types of files such as images etc.

8

——

Explore the Assembly Mirdoch

Co

IIIIIIIIII

mpile the source code into an assembly:

csc HelloCS.cs

The assembly is named HelloCS.exe. This is the

C
Ex

efault output name.
nlore the assembly using IL disassembler named

dasm.exe by typing the command:

ildasm Hello.exe

hes»"C:\Program Files \Microsoft SDEs\Windows'w7.88\Bin\ildasm.exe"

d
File View Help
B4 cicsiHello,exe
P MANIFEST
=-JJE Hella
b .class public auto ansi beforefieldinit
. Jchar ¢ waid()
‘o B Main ; void{string[])

_f Hello:.ctor : void()

Find Find Mext

"c:hvcs\Hello.exe"

8

—_—

A 4
urdoch

IVERSITY

|.method public hidebysig specialname rtspecialname
instance void .ctor{) cil managed
{
/7 Code size g (8x8)
-maxstack 8
IL_8a888: 1l1darg.8
IL_8881: call instance void [mscorlib]System.
IL_8886: nop
IL_8887: ret
£/ end of method Hello::.ctor

Jassembly Hello

e 0000

Object::.ctor()

Note: the above screenshot was generated with Visual Studio 2017 If you use other version of
Visual Studio, the display diagram and its content may differ slightly.

Find Find Next

/7 Hetadata version: v2.8.50727

.assembly extern mscorlib <

Murdocvh

this is external assembly
C:\WINDOWS\Microsoft.NET\Framework

\v2.0.50727\mscorlib.dll

f/ .zZ\U. I

This is our assembly name

{
.publickeytoken = (B7 7A 5C 56 19 34 EO 89)
.ver 2:0:0:8

3

.assembly HelloCS =

A
.custom instance void [mscorlib]System.Runtime.CompilerServices.CompilationRe
.custom instance void [mscorlib]System.Runtime.CompilerServices.RuntimeCompat
.hash algorithm 6x00068004
.ver 0:0:0:8

b

Our assembly is stored in file:
HelloCS.exe

.module HelloCS.exe <«

/7 MUID: {D8B2AE28-473F-4E1C-BADA-ASAB3CO21FCY?}
.imagebase 0x00400000

.file alignment B6x0000020680

.stackreserve 0x00100000

.subsystem B8x00863 /7 WINDOWS_ CUI
.corflags 6x00000001 // TILONLY

// Image base: Ox02EF0800

1< |

Hello class. This class is

metadata .class directive for

metadata .method
directive for the default
constructor method in
Hello class.

.ctor() indicates that this
method is a constructor.

This following .method
directive describes
another method: Main.
This method has a
.entrypoint directive, so
the execution of the
program starts from
here.

!)) o PR ’ ’ ¢ N
inherited from Sy_stem.ObJect Eind Find Next |
class from mscorlib assembly

| .class public auto ansi beforefieldinit Hello

{
¥ /7 end of class Hello

extends [mscorlib]System.0Object

\‘“ Find Find Next

.method public hidebysig specialname rtspecialname
instance void .ctor({) cil managed

Find Find Next

{
// Code size 7 (Bx7)
-maxstack 8
IL_6686: 1ldarg.®
IL_8081: call instance void [mscorlib]System.Object::.ctor()
IL_8666: ret

¥ /7 end of method Hello::.ctor

{

IL_606608:
IL_0661:
IL_06066:
IL_866b:
IL_666c:
¥y /7 end of

.method public hidebysig static void Hain({) cil managed |

.entrypoint

// Code size 13 (8xd) implementing the
.maxstack 8 two methods

These are IL code

nop
ldstr “"Hello, world?®"

call void [mscorlib]System.Console::WriteLine(string)
nop

ret

method Hello::Main

F
Note ~
Murdoch

UNIVERSITY

You will notice minor differences between the
examples using Visual C# 2013, 2015, 2017.

"C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\MSBuild\15.0\Bin\Roslyn\csc.exe"
"c:\cs\Hello.cs" /out:"c:\cs\Hello.exe"

"C:\Program Files (x86)\Microsoft
SDKs\Windows\v7.0A\Bin\ildasm.exe" "c:\cs\Hello.exe"

Example 2 1

w

Murdoch

UNIVERSITY

A Visual Basic .NET Source code: HelloVB.vb

Option Strict On
Option Explicit On

Module Hello Note t | e same
metho [d from the

. Main m| ethod in
Sub Main() /the C |# code

System.Console.WriteLine("hello, world!")

End Sub

End Module

N:\uwuuN\lectures\tB2>dir HelloUB
Uolume in drive N is Shared Folders
Uolume Serial Number is B000-0064

Directory of N:\uww\lectures\tBh2
10,/682,2008 0B4:37 PM 156 HelloUB.vb

1 Filed(s> 156 bhytes
B Dir(s> 44,.556.414.976 bytes free

N:\uwuwuN\lectures\tB2>vhc HelloUB.vb
Microsoft (R)> Uisual Basic Compiler version 9.0.21022.8

| opyright <{(c> Microsoft Corporation. All rights reserved.

N:\uwuwN\lectures\tHB2>dir HelloUB>
Uolume in drive N is Shared Folders
Uolume Serial Number is O000-8B0B64

Directory of N:\uwwuw\lectures\tB2

18,82,2088 ©B4:37 PM 6.656 HelloUB.exe

10/02,2008 ©B4:37 PM 156 HelloUB.vb
2 File<(s> 6.812 bhytes
A Dir(s> 44.556.410.880 hbytes free

H:\www\lectures\t@Z)He110UB
hello, world?

N:\uwuuN\lectures\th2>

Fl

— e

b 4

Murdoch

UNIVERSITY

o

e

.

e

Wiew Help

MAMNIFEST
My

Elt My My pplication

----- b .class private auto ansi

----- b extends [Microsoft, YisualBasicJMicrosoft, VisualBasic, ApplicationServices, ApplicationBase

----- B .custom instance void [Syskem]System. Codelom, Compiler . GeneratedCodedttribute: ;. chor{string, ...

----- B .custom instance void [Syskem]System. ComponentModel EditorBrowsabledttribute: ;. chorvaluetype [System]Svstem. ComponentModel EditarBrowsableState) = { 01 00 01 000000 0000 Y ...
----- B ko ovoid])

Ea---t My My Compuker
EI---E My My Project

----- B .class private auto ansi sealed beforefieldinit

----- B .custom instance void [Microsaft, VisualBasic [Micrasaft, YisualBasic . Campiler Services, StandardMaduledttribote: cbard = (01 000000 3 ..,
----- P .custom instance vaid [Microsoft. VisualBasicJMicrasaoft . visualBasic, HideMaoduleMameAttribute: s .ctor{) = {01 000000) ...

----- B .custom instance woid [Syskern]Sysken. CodeDarn, Compiler, SeneratedCodedttribute: 1 char{string, ...

w-JJE MyWehServices

w-[F ThreadSafechjectProvider” 1 <.ckar T

----- & m_appobjectProvider @ private skatic initonly class My MyProject/ThreadSafeObjectProvider ™ 1 <class My Myapplication =

----- & m_ComputerObjectProvider | private static initonly class My, MyProject) Thread3afeObjectProvider ™ 1 <class My, My Computer =

----- & m_MyWebServicesObjectProvider ¢ private static initonly class My, MyProjectf ThreadsafeObjectProvider ™ 1 <class My MyProject/MyWebServices =
----- @ m_UserObjectProvider @ private static initonly class My, MyProjectThreadSafeCbjectProvider ™ 1 <class [Microsoft. YisualBasic JMicrosoft. VisualBasic. ApplicationServices. User =
----- Jcckor void()

----- get_application : cass My, MyApplication)

----- get_Compuker @ class My MyComputer()

----- get_User @ class [Microsoft, VisualBasic[Microsoft, YisualBasic ApplicationServices User()

----- get_webServices 1 dass My MyProject/My'WebServices()

----- A Application ; class My, MyApplicationd)

----- A Computer : dass My MyComputer()

----- A User : class [Microsoft, visualBasicMicrosoft, VisualBasic. ApplicationServices, User()

----- A webServices : class My, MyProject/MyWebServices))

Hello

B .class private auto ansi sealed

B .custom instance void [Microsoft, YisualBasicJMicrosaft, YisualBasic. CompilerServices, StandardModuleAttribote:: .chor() = { 01 000000 3 ...
Main ¢ woid])

b

.assembly HelloVe

ser 000

8

——

Command Line Options S

IIIIIIIIII

The compilers csc and vbc have many command
line options. Use csc /help and vbc /help to find
out those options.

For example, you can create a library assembly
with option /target:library.

The disassembler ildasm also has many options.
For example /out allows you to create textual

file, rather than using GUI.

——

Example 3 L]

A 4
Murdoch
A C# code for a library 77 MyClass.cs
class MyClass.cs. e
_ public class MyClass
This source code can be ‘.
])] public static string Answer()
compiled into a library { |
return "My name is...";
assembly. }

g

he following command
compiles the source code
into a library assembly
named MyClassLib.dll:

csc /target:library /out:MyClassLib.dll MyClass.cs

Example 4

A C# Source code: Question.cs

8

—_—

w

Murdoch

UNIVERSITY

// Question.cs

//
// calling a method in MyClass

public class Hello
{
public static void Main()
{
System.Console.WriteLine("Hello, wh
string msg = MyClass.Answer();
System.Console.WriteLine("Th
b

)

’MyCIass inside a separate
library assembly named

MyClassLib.dll

Note that we are calling method
Answer which is defined in class

your name?");

nswer is {0}.", msg);

32

Fl

— e

b 4

Murdoch

UNIVERSITY

he answer is My name is Hong.

:\cyguinNhomeN\Administrator\ict239\MyClas
:\cyguwinNhomeN\Administrator\ict239\MyClas
:\cyguwinNhome\Administrator\ict239\MyClass>
:N\cyguwinNhomeNAdministrator\ict239\MyClass>
\cyguinNhome\Administrator\ict239\MyClass
:N\cyguwinNhome\Administrator\ict239\MyClass>
\cyguinNhome\Admninistrator\ict239\MyClass>
:N\cyguwinNhomeN\Administrator\ict239\MyClass>
:\cyguwinNhome\Administrator\ict239\MyClass>
:N\cyguwinNhomeN\Administrator\ict239\MyClass>
\cyguinNhome\Administrator\ict239\MyClass>csc /reference:MyClassLib.dl]l Questi
n.cs

icrosoft (R)> Uisual CH 20085 Compiler version 8.088.50727.42

or Microsoft (R)> Windows <(R)> 2885 Framework version 2.60.50727

opyright (C> Microsoft Corporation 2001-20085. All rights reserved.

>
>

<
~>
<
~>

:N\cyguwinNhomeN\Administrator\ict239\MyClass>Question
ello, what’s your name?
he answer is My name is Hong.

:\cyguwinNhomeNAdministrator\ict239\MyClass>

3
4

Fl

——

Use /Reference Option i

IIIIIIIIII

Since Question.cs uses the class MyClass from library
assembly MyClassLib.dll, it is necessary to specify
the location of that library assembly in order to
compile Question.cs successfully:

csc /reference:MyClassLib.dll Question.cs

As a general rule, you should specify all external
assemblies when compiling your source code except
mscorlib.dll which is included automatically by the
compiler.

Compiling Multiple Files into One N

——

w

Assembly Murdoch

IIIIIIIIII

We can also compile several source code files into
one assembly.

For instance, we can compile both Question.cs
and MyClass.cs into one assembly
Question.exe:

csc Question.cs MyClass.cs

8

A4

CLR versus CLI. Miurdoch

UNIVERSITY

CLR is actually an o v
implementation by = g g
Microsoft of the CLI 1 l l

(Common Language
%\r/’)

Infrastructure) . B T

CLI is an open | |
§ NET) compal lble_l ngruagej compile to a

specification. =l et
CLR Is really a Common e eompies Ok o e
p I a tfo rm S p e C i fi C Lﬂaﬂﬁ;‘lﬁ%c rel;dabz code that cF;n he executed on the

i cccccc t platform.
implementation.

5. 11010101100110 from wikipedia.org

http://upload.wikimedia.org/wikipedia/commons/6/6a/Overview_of_the_Common_Language_Infrastructure.png

The CLR Architecture

n

—_—

w

Murdoch

UNIVERSITY

Base Class Library Support

MSIL to Native Code

Class Loader

Thread Support COM Marshaler

Type Checker Exception Manager

Security Engine Debug Engine

Garbage
Compilers (JIT) Manager Collector (GC)

From MSDN

8

Common Language Infrastructuréuurdoec

IIIIIIIIII

(CLI)

CLI allows for cross-language development.
Four components:
Common Type System (CTS)

Meta-data in a language agnostic fashion.

Common Language Specification — behaviors that
all languages need to follow.

A Virtual Execution System (VES).

Common Type System (CTS) %

IIIIIIIIII

« A specification for how types are defined
and how they behave.

no syntax specified

A type can contain zero or more
members:

Field
Method
Property
Event

« We will go over these more throughout
the quarter.

Common Type System (CTS)

Murdoch

IIIIIIIIII

« CTS also specifies the rules for visibility
and access to members of a type:

Private

Family

Family and Assembly
Assembly

Family or Assembly
Public

Common Type System (CTS)

o Twe |

Value types | | Reference types

Built-in value types |

User-defined value types]

Pointer types

Interface types

Enumerations |

From MSDN

L Self-describing types]

.ﬂFIE'y’E]

Class types |

n
W
Murdoch

UNIVERSITY

User-Defined Classes

Boxed Value Types

Delegates

Languages offer a subset of the CLR/CTS and a
superset of the CLS (but not necessarily the <

same superset).

CLR/CTS

A Visual
Basic

Murdoch

UNIVERSITY

The CLR/CTS supports a lot

more features than the
subset defined by the CLS,
so if you don’t care about
interlanguage operability,
you can develop very rich
types limited only by the
language’s feature set.
Specifically, the CLS defines
rules that externally visible
types and methods must
adhere to if they are to be
accessible from any CLS-
compliant programming
language. Note that the CLS
rules don’t apply to code
that is accessible only within

the defining assembly.
49

Fl

——

Common Type System e

UUUUUUUUUU

One of the primary aims of .NET is language
interoperability.

A major obstacle in language interoperability is the
existence of many similar, but incompatible, types in
different high-level programming languages.

To achieve language interoperability, the underlying
CLR must support a common set of types into which
the types from all high-level languages can be

mapped.

CLI specifies just such a common set of types known as
Common Type System or CTS.

Fl

— e

Common Type System e

IIIIIIIIII

Another important reason that calls for CTS is
the need to creating a common set of
libraries that can be used from, and created
by, any .NET language.

Without a common type system it would be
impossible to create such a set of libraries.

The best way to organise such kind of libraries
is the object oriented system, due to its
excellent support for encapsulation,
inheritance, and polymorphism.

Therefore CTS must be an object oriented
system.

Taxonomy of CTS v

Murdoch

UNIVERSITY

CTS consists of value
types and reference
types.

Value types are
referenced directly
in the program
stack.

Reference Types

Value Types

e e e e e e e e e e - = or " - e e = e - -

Reference types are
stored in program
heap and are The above diagram s coped fom Urit Reader:Itro o NET and C#
referenced via a
pointer.

Figure 1-4 Base types defined by Common Type System

Fl

Built-in Types ~
siidocy

BCL Type |[C# VB C++ IL
Boolean bool Boolean bool bool
Byte |byte [Byte |dnsigned junsigned
Char char Char wchar_t char
DateTime |n/a Date n/a n/a
Decimal decimal Decimal n/a n/a
Double double Double double float64
Intl6 short Short short int16
Int32 int Integer int int32

Fl

—_—

T L]
Built-in Types oo
BCL Type|C# VB C++ IL
Int64 long Long int64 inte64
IntPtr n/a n/a n/a native int
Object |object |Object |[n/a object
SByte sbyte n/a signed char |int8
Single [float Single float float32
String string |String n/a string
unsigned unsigned
UIntl6 |ushort [n/a <hort int16
. . ., lunsigned
UInt32 |uint n/a unsigned int nt32

Fl

TP L
Built-in Types Vi
BCL Type |C# VB C++ IL
unsigned unsigned
UInt64 ulong n/a nt64 nt64
UIntPtr n/a n/a n/a native

unsigned int

Note:

1) all primitive types lives in System namespace in
mscorlib.dll assembly

2) all types listed in the above table except

Object and String are value types

Example 5

8

—_—

w

Murdoch

UNIVERSITY

The following example defines many variables of

different primitive types in C#

// TypesExample.cs
//

// compare how types in C# are matched
// to IL

using System;

class Example

{
static int intMember;
long longMember;
uint unitMember;

float floatMember;
double doubleMember;
char charMember;

bool boolMember;

short shortMember;
decimal decimalMember;
sbyte sbyteMember;
string stringMember;

struct Point

{

int x;
inty;

static void Main(string[] args) g
{ Murdoch

UNIVERSITY

int intLocal;

long longLocal;

uint uintLocal;

float floatLocal;
double doublelocal;
char charlLocal;

Console.WriteLine("Beginning of Example");
intMember = 32;
intLocal = -10;
longlLocal = 20;
uintLocal = 100;
floatLocal = 15.5F;
doubleLocal = 31.4;
charLocal = 'A";
Console.WriteLine("intLocal = {0}", intLocal);
Console.WriteLine("intMember = {0}", intMember);
Console.WriteLine("The end of Example");

—_—

.)4

7 TypesExample.exe - I DASM S EX Murdoch

File Yiew Help UNIVERSITY

=« TypesExample.exe
P MANIFEST
= [JE Example
b
= _E Point

b .class value nested private sequential ansi sealed beforefieldinit
P extends [mscorlib]System. ValueType
. field x : private int32
« Field y : private int32

« field boolMember : private bool

. field charMember : private char

« field decimalMember : private valuetype [mscorlib]System.Decimal

. field doubleMember : private floate4

« field floatMember : private float32

$ field intMember : private static int32

. field longMember : private int64

. field sbyteMember : private int8

. field shortMember : private int16

« field stringMember : private string

« field unitMember : private uint32

& method .ctor : void()

&l method Main : void{string[])

.assembly TypesExample)

Find Find Next

/7 Metadata version: v2.8.508727
.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 EO 89) f7 .z\U
.ver 2:0:0:80

?
.assembly TypesExample

<
.custom instance void [mscorlib]System.Runtime.CompilerServices.CompilationR
.custom instance void [mscorlib]System.Runtime.CompilerServices.RuntimeCompa

.hash algorithm 0x00068004
.ver 0:0:0:8
?
-.module TypesExample.exe
/7 MUID: {F12213CB-BC4E-44CB-ABCE-953480B4CE42}
.imagebase 0x00400000
.file alignment 0x00000208
.stackreserve 8x00100008
.subsystem 0x0003 // WINDOUWS_CUI
.corflags 0x000000061 /7 TILONLY
// Image base: OxB2EF0068

#
f,zﬁ%#-.ff*ﬂéﬁbx “f'f w:;mwﬁﬁj%n

Find Find Next

iLmethod private hidebysig static void Hain{string[] args) cil managed

<

.entrypoint

/7 Code size 100 {(06x64)

.maxstack 2

.locals init (int32 U_8,

intés U_1,
uint32 U 2,
float32 U_3,
float6y U_4,
char U_5)
IL_8666: nop
IL_8661: 1ldstr
IL_868686: call
IL_666b: nop
IL 886c: 1ldc.ik.s
IL_668e: stsfld
IL_8613: 1dc.i4.s
IL_8615: stloc.®
IL_8816: 1dc.ik.s
IL 8018: conv.i8
IL_6619: stloc.1
IL_8681a: 1dc.i4.s
IL_881c: stloc.2
IL_661d: 1dc.ri
IL_8822: stloc.3
IL_08623: 1dc.r8
IL_882c: stloc.s
IL_882e: 1dc.i4.s
IL_86836: stloc.s
IL_86832: 1ldstr
IL_8637: 1dloc.8
IL_6638: box
IL_8683d: call

TI QKD - nnon

“Beginning of Example"
void [mscorlib]System.Console::WriteLine{string)

32
int32 Example::intHember
-18

28

1060
15.5

31.399999999999999
U 4

65

T

"intLocal = {@}"

[mscorlib]System.Int32
void [mscorlib]System.Console::WriteLine({string,
object)

h

efisifr 5

1
Common Intermediate Languag@udoc

IIIIIIIIII

Common Intermediate Language (CIL or IL) is specified
in CLI and is implemented in CLR.

It is similar to many assembly languages but it is not
targeting any specific processor. This makes .NET
programs processor-independent.

The IL operates as a stack machine in that most
operands are pushed into the stack, and instructions
make use of these operands from stack rather than
from registers. The later is how most CPU
architectures operate with.

The stack machine makes IL more general purpose as
one does not need to worry about how many registers
should be available in the underlying hardware.

The code based on stack machine can be efficiently
compiled to register-based CPU.

Just-In-Time Compilation L

siidocy
The IL code cannot be executed directly on
any processor. It is compiled into native CPU
instructions at run-time when the method is
called.

Such compilation is known as Just-In-Time
compilation. The compiler is commonly
referred to as JIT. JIT is a component of
CLR.

A method is only compiled once in a process
when it is called the first time.

Subsequent calls to the same method will
directly call the compiled native code, rather
than the IL code.

CLR and JIT compiling. L

Murdoch

UNIVERSITY

C#, Ilke Java, |S Visual C# Project

executed indirectly ‘ cy source | [_Resources_]
through an abstract l "1 |
computer architecture o s ompior |
called the CLR. | cresces
CLR => Com mon ManagedMﬁ.SﬁlierMnEtI:d{ije or .dil)
Language Runtlme. IL metadata & references
Abstract, but well EEEE— j oeoea Y =R
defl ned " [cgmggcnuhﬁauégfhg;:lime Uses rélET FILE!_E'IE'-'{ﬂrh
C # p rog ra m S a re _ Collection / JIT Compiler
compiled to an IL. l Convertea to native

Also called MSIL, CIL Operating System
(CO m m O n I n te rm e d I a te http://msdn2.microsoft.com/en-us/library/z1zx9t92(VS.80).aspx
Language) or
bytecode.

http://msdn2.microsoft.com/en-us/library/z1zx9t92(VS.80).aspx

F
When does CLR start? ~

Murdoch

IIIIIIIIII

The .EXE assembly contains a tiny boot-strap code.

When the assembly is loaded, that boot-strap code is
executed. This code loads CLR and pass the Main
method (or the method with an .entrypoint
directive) to it.

From there CLR would take control of the execution
of the assembly.

Therefore CLR is transparent to the user.

8

—_—

w

Murdoch

IIIIIIIIII

Application Packaging and
Deployment

8

—_—

Application Deployment g

Murdoch

UNIVERSITY

Need to consider the following issues:
how the application is packaged

how the packaged application is distributed:

on a portable media such as a CD, or a DVD, or a USB
drive

downloadable from network such as website or
network share

retrievable from network selectively by the installation
program

how the application is run on the local machine:

by installing on the local machine

by running directly off the network such as a website
how the application is updated

ClickOnce Technology bt

8

—_—

Murdoch

UNIVERSITY

.NET Framework 2 introduced ClickOnce deployment

tec
Visua

A pac

nnology
Studio can package an application for distribution

kaged application can be distributed using a

portable media such as DVD, a network share, or a
website

An application can be installed on a local machine under
the user’s profile, so that it can be run by the user off-
line

An application can also be launched from a website,
similar to Java Webstart

An application can automatically check for the new
version on the website and update itself

Deployment Using Portable Media <!
Murdoch

UNIVERSITY

This example demonstrates how to deploy an application
using a CD or similar portable media.

After the application is packaged (i.e., published) in a disk
directory, you can copy the directory files to a CD or a
USB drive for distribution.

To install this application, run “setup.exe” program
included in the package.

The application will be installed on the logon user’s profile
on the local machine in an obfuscated location. A
shortcut will be added to the start menu. An entry will be
added to the Add/Remove Program in Windows Control.

The application can be removed using Add/Remove
Program.

Create Deployment Package <
Murdoch

IIIIIIIII

From Visual Studio’s Solution Explorer window, right-click
the project, then select “"Publish”

“Publish Wizard” dialog pops up. Select the directory to

temporarily store the application package. Then click
Next.

Click "From CD-ROM or DVD-ROM” radio button, then click
Next

Click "The application will not check for updates”, then click
Next

The dialog shows “"Ready to Publish!”. Click Finish.
Now the application is packaged and is ready for distribution.

Copy the files in the temporary directory to a CD or a USB
drive for distribution.

Publish Wizard

Where do you want to publish the application?

Specify the location to publish this application:

. Sewwilecturesitl 11Publishi Browse, ..

You may publish the application to a web site, FTP server, or file path.

Examples:
Disk path:
File share:
FTP server:
Web site:

c:\deployimyapplication
Viserverimyapplication
ftp:Jftp.microsoft.com/myapplication
http: /fwww, microsoft, comfmyapplication

Finish

Cancel

Publish Wizard

How will users install the application?

() From a Web site

() From a UNC path or file share

(){From a CD-ROM or DYD-ROM :

Murdoch

UNIVERSITY

[< Previous]

Mext >

Finish

[Cancel J

Publish Wizard

Where will the application check for updates?

() The application will check for updates from the Following location:

(%) The application will not check for updates

[< Previous

Next =

Finish

[Cancel

]

Publish Wizard

Ready to Publish!

The wizard will now publish the application based on your choices.

The application will be published to:
File: f]IN: jwwwflectures/t11/Publish1/f

When this application is installed on the client machine, a shortcut will be added to the Start Menu, and the
- application can be uninstalled via AddjRemove Programs.

[< Previous fden Finish

& N:wwwilecturesi\t11\Publish1

File Edit VYiew Favorites Tools Help

@Back A _/ '? 7) Search 4! -"’ Folders = |

— p—

4

Murdoch

UNIVERSITY

X 9

Address |10 Niywwwilecturesit1 13Publish1

Name = Size Type
_¥application Files : File Folder
__PListboxExample. application 6 KB Application Manifest
.') setup.exe 457 KB Application

Date Modified
5/14/2008 3:40 PM
5/14/2008 3:40 PM
5/14/2008 3:40 PM

3
Use Property Dialog b

Murdoch

UNIVERSITY

An application can also be packaged using the properties
page (not Properties window) from the Solution Explorer
window:

Right-click the project from Solution Explorer window.
Select Properties.

The Properties page pops up. Select "Publish” menu on
the left.

Enter the necessary information.

Click "Option” to enter the name of your application such
as "My listbox” and company name such ICT365. Your
shortcut in the Start menu will be "ICT365=>My
listbox”.

Enter the name of your deployment html page such as
“publish.htm”

& ListboxExample - Microsoft Visual C# 2008 Express Edition
File Edit WYiew Project Build Debug Data Tools Window Help

ARzt 1 = N IR RN RN | gl | o :
~ ListboxExample® Formi,cs [Design] | s N v X
O — " e —— — —_— ———— ﬂ

|
Application
i Publish Location
Build Publishing Folder Location {web site, Ftp server, or file path):
M:hwwilecturesitl 11Publish2), | .

| Build Events
\ Installation Folder URL (if different than above):
~ Debug Vil

Resources Install Mode and Settings

Rty g g Application Files. ..
‘ Settings () The application is available online only
(*) The application is available offline as well {launchable from Start menu) Prerequisites...
Reference Paths
Updates...
Signing
Options...

Securit
| X Publish Yersion

Publish Major: Minor: Build: Revision:

1 0 0 2
Bt s Automatically increment revision with each publish
Publish Wizard... Publish Mow

Publish succeeded

Publish language:

bt ke e
1CT239

LDeFault) i ’

_Product name:

.E List Box

Support URL:

A \ Browse. .,

Deployment web page:

‘publish.htm

Automatically generate deployment web page after every publish
Open deployment web page after publish

[] Block application from being activated via a URL

Use ".deploy" file extension

[] allows URL parameters to be passed to application

For CD installations, automatically start Setup when CD is inserted
[] verify files uploaded to a web server

[] use application manifest For trust information

QK Cancel

n

W
Murdoch

UNIVERSITY

— p—

4

Murdoch

UNIVERSITY

& N:\wwwilectures\11\Publish2

File Edit View Favorites Tools Help

@Back * & 1? /.:\'\' Search || Folders ";; Lj}\ ‘ x 'Q

Address ’&_‘) N:\wwwllecturesit1 11Publish2 Go

Mame - Type Date Modified

) Application Files File Folder 5/14/2008 3:54 PM
_}autorun.inf Setup Information 5/14/2008 3:54 PM

__¥ListboxExample.application Application Manifest 5/14/2008 3:54 PM

publish.htm Firefox Document 5/14/2008 3:54 PM
.)setup.exe Application 5/14/2008 3:54 PM

Deployment From Web Only ~

1
Murdoch

IIIIIIIIII

Our next example demonstrates how to deploy an

app
The a
app

ication from a website.
pplication can only be run from the website. The

ication is not installed on the local machine.

8

—_—

Deployment Steps e

UNIVERSITY

Right-click the project from Solution Explorer window. Select
Properties. The Properties page is displayed.

Enter the deployment directory. In our example, we use directory
“N:\www\lectures\t11\Publish3".

Enter the deployment website url, eg: This link is not active
http://www.it.murdoch.edu.au/units/ICT365/Test/MyListbox

Click “The application is available online only”.

You can enter product name such as "My Listbox” and company
name such as “ICT365"” from Option menu.

Enter the name of the deployment web page, such as “run.htm”,

Click “Publish Now”. The application package will be created in the
deployment directory “N:\www\lectures\t11\Publish3\".

Copy all files from the deployment directory to the deployment
website.

http://www.it.murdoch.edu.au/units/ICT365/Test/MyListbox

i ListboxExample - Microsoft Visual C# 2008 Express Edition

File Edit View Project Build Debug Data Tools Window Help

AN RN N AR ISR Y AR A 2N | | &
; 7_|7=0rm1,c5 [Design] ListboxExample* v X
Application
PR Publish Location
Build Publishing Folder Location (web site, ftp server, or file path): :
Niwwwilecturesitl 11 Publish3y v }
Build Events Z = =
Installation Folder URL (if different than above): -
Debug \http:ﬁwww.it.murdoch.edu.au,funitsj'ICT239!TestIMyListboxI v I
Resources Install Mode and Settings
ication i i - Application Files...
Settings (%) The application is available online only [1
() The application is available offline as well (launchable from Start menu) [Prerequisites. ..
Reference Paths
Signing
Options...
Securit
Fads i Publish Yersion
| Publish® Major: Minor: Build: Revision:
PR O O | 2
Automatically increment revision with each publish
[Publish ‘Wizard... Publish Mow]

Publish succeeded

n

— —

| '
Murdoch

Publish language:

’EDeFault)

Alf'l:lt.alisht»er name:

1CT239

Product name:

IMy List Box

Support URL:

v Browse. ..

Deployment web page:

‘'run.htm

Automatically generate deployment web page after every publish
Open deployment web page after publish

[] Block application from being activated via a URL

Use ".deploy" file extension

[] Allow URL parameters to be passed to application

For CD installations, automatically start Setup when CD is inserted
[] verify files uploaded to a web server

[] use application manifest For trust information

QK l Cancel

8

Run Application W;ggh
To run the application, enter the following url in a

web browser:

http://www.it.murdoch.edu.au/units/ICT365/Test/MyList
box/run.htm

Then ¢
the a

The ap

ick "Run” button in the web page to launch
oplication.

lication will be retrieved from the website to

the local machine to run.

http://www.it.murdoch.edu.au/units/ICT239/Test/MyListbox/run.htm

ea0no My List Box

\—

> J l'lﬂJ l A AJ [EJ [+ ' http:/ jwww.it.murdoch.edu.z G] (C'!c Google

My List Box

ICT239

My List Box

Name: My List Box
Version: 1.0.0.7

Publisher: ICT239

The following prerequisites are reguired:

& Windows Installer 3.1
o _NET Framewark 3.5

If these components are already installed, you can launch the application now. Otherwise, click
the button below to install the prereguisites and run the application.

Run

el O B - . — - - -
ClickCince and .MET Framework Resources

)'

och

RSITY

8

—_—

Limitations of ClickOnce i

IIIIIIIIII

ClickOnce application does not use Registry. The
application is installed in a completely separate
place under the logon user’s profile. It does not
share files with other application.

It is good for thin client applications. For applications
that need to share libraries, it may be better to use
Microsoft Installer to create application package.

8

Summary i

UNIVERSITY

IL/MSIL/CIL - IL code is a CPU independent partially compiled code. It's partially compiled because
we do not know in what kind of environment .NET code will run and on runtime IL Code will
compile to machine code using the environmental properties (CPU, OS, machine configuration,
etc).

ILDASM - This is a tool provided by Visual Studio to view IL code. To run ILDASM, we have to select
option “Visual Studio Command Prompt” from “Visual Studio Tools” and type ildasm. It will open
the ildasm tool where we can open any exe/dll.ildasm tool read the assembly by reflection and it
is showing us various properties, methods which our assembly has. Here, we can see IL code of
any method/property by clicking on that.

CLR - CLR is the heart of the .NET framework and it does 4 primary importantthings:
Garbage collection

CAS (Code Access Security)

CV (Code Verification)

IL to Native translation

CTS - CTS ensures that data types defined in two different languages get compiled to a common data
type. This is useful because there may be situations when we want code in one language to be
called in other language.

We can see a practical demonstration of CTS by creating the same application in C# and VB.NETand
then compare the IL code of both applications. Here, the datatype of both IL code is same.

CLS - CLS is a subset of CTS. CLS is a set of rules or guidelines. When any programming language
adheres to these set of rules, it can be consumed by any .NET language.CTS.

JIT - JIT compiles the IL code to Machine code just before execution and then saves thistransaction
in memory. 99

REFERENCES:
Assemblies, deployment

8

—_—

w

Murdoch

IIIIIIIIII

92

n

Reading/ reference o

M h
http://prospero.murdoch.edu.au/record=b2962782~S1 UHvrgchY

Chapter 16. Packaging and

Deploying Your Code Cross-
Platform

C# 7 and .NET Core:
Modern Cross-Platform
Development

Create powerful cross-platform applications using C# 7,
NET Core, and Visual Studio 2017 or Visual Studio Code

L1 Packt>

http://prospero.murdoch.edu.au/record%3Db2962782%7ES1

8

—_—

Reading/ reference A
http://prospero.murdoch.edu.au/record=b2962780~S1 UNIVERSITY

Chapter: Understanding CIL and the AT g
Role of Dynamic Assemblies WL T

(# 6.0 and-

the .NET 4.6
Framework

Seventh Edition

Andrew Troelsen
Philip Japikse

Apress’

http://prospero.murdoch.edu.au/record%3Db2962780%7ES1

Reading/ reference

Chapter Assembly Loading
and Reflection

8

—_—

w

Murdoch

UNIVERSITY

" § Mcrcach

CLR via C#

Fourth Edition

REFERENCES:
CLR, CIL

8

—_—

w

Murdoch

IIIIIIIIII

96

8

—_—

Reading/ reference A
http://prospero.murdoch.edu.au/record=b2962780~51 UNIVERSITY

Chapter: Understanding Object
Lifetime

Chapter: Building and Configuring AT
Class Libraries N

28

(# 6.0 and |

Chapter: Type Reflection, Late

Binding, and Attribute-Based
Programming the NET 4.6
Chapter: Dynamic Types and the Fra mework

Dynamic Language Runtime

Seventh Edition

Chapter: Processes, AppDomains, Tl
and Object Contexts Phlip Japikse

Apress’

http://prospero.murdoch.edu.au/record%3Db2962780%7ES1

Reading/ reference

Chapter 1. The CLR’s Execution
Model

Chapter 2. Building, Packaging,
Deploying, and Administering
Applications and Types

Chapter 3. Shared Assemblies and
Strongly Named Assemblies

Chapter 21. The Managed Heap
and Garbage Collection

Chapter CLR Hosting and
AppDomains

8

—_—

w

Murdoch

UNIVERSITY

" Mcrcach

CLR via C

Fourth Edition

